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Abstract

Evapotranspiration is one of the major components of the water balance and has been
identified as a key factor in hydrological modelling. For this reason, several methods
have been developed to calculate the reference evapotranspiration (ET0). In modelling
reference evapotranspiration it is inevitable that both model and data input will present5

some uncertainty. Whatever model is used, the errors in the input will propagate to
the output of the calculated ET0. Neglecting information about estimation uncertainty,
however, may lead to improper decision-making and water resources management.
One geostatistical approach to spatial analysis is stochastic simulation, which draws
alternative and equally probable, realizations of a regionalized variable. Differences10

between the realizations provide a measure of spatial uncertainty and allow to carry out
an error propagation analysis. Among the evapotranspiration models, the Hargreaves-
Samani model was used.

The aim of this paper was to assess spatial uncertainty of a monthly reference evap-
otranspiration model resulting from the uncertainties in the input attributes (mainly tem-15

perature) at regional scale. A case study was presented for Calabria region (southern
Italy). Temperature data were jointly simulated by conditional turning bands simulation
with elevation as external drift and 500 realizations were generated.

The ET0 was then estimated for each set of the 500 realizations of the input variables,
and the ensemble of the model outputs was used to infer the reference evapotranspi-20

ration probability distribution function. This approach allowed to delineate the areas
characterized by greater uncertainty, to improve supplementary sampling strategies
and ET0 value predictions.
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1 Introduction

Reference evapotranspiration (ET0), defined as the potential evapotranspiration of a
hypothetical surface of green grass of uniform height, actively growing and adequately
watered, is one of the most important hydrological variables for scheduling irrigation
systems, preparing input data for hydrological water-balance models, and calculating5

actual evapotranspiration for a region and/or a basin (Blaney and Criddle, 1950; Dyck,
1983; Hobbins et al., 2001a, b; Xu and Li, 2003; Xu and Singh, 2005; Gong et al.,
2006).

The concept of reference evapotranspiration was introduced to study the evaporative
demand of the atmosphere independently of crop type, crop development and man-10

agement practices. As water is abundantly available at the reference evapotranspiring
surface, soil factors do not affect ET0. The only factors affecting ET0 are climatic at-
tributes. Consequently, ET0is a climatic attribute and can be computed from weather
data. ET0 expresses the evaporating power of the atmosphere at a specific location
and time of the year and does not consider the crop characteristics and soil factors15

(Allen et al., 1998).
A multitude of methods exists to estimate reference evapotranspiration, ET0, (e.g.,

Xu and Singh, 2002). The techniques for estimating ET0 are based on one, or more,
atmospheric variables, such as air temperature, solar or net total radiation and humidity,
or some measurement related to these variables, like pan evaporation (ETpan). Some20

of these methods are accurate and reliable; others provide only a rough approximation.
Most of the methods were developed in specific studies and work better when applied
to the climate for which they were developed (Penman, 1948; Jensen, 1973).

The Penman-Monteith equation is widely recommended because of its detailed the-
oretical base and its accommodation of small time periods. However, the detailed25

climatological data required by the Penman-Monteith are not often available especially
in developing nations. This lack of meteorological data was resolved by Hargreaves et
al. (1985) who devised an easy approach for calculating ET0. The Hargreaves equation
(Hargreaves and Samani, 1985) requires only daily mean, maximum, and minimum air
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temperature, usually available at most weather stations world-wide, and extraterres-
trial radiation (Droogers and Allen, 2002). This method behaves best for weekly or
longer predictions, although some accurate ET0 daily estimations have been reported
in literature (Hargreaves and Allen, 2003).

To improve the prediction capacity of ET0 models for large areas, spatial data should5

be used as inputs because their continuous variation may reflect more appropriately
the nature of the ET0 in comparison to the measurements made only at a few weather
station locations. When the input data are sparse or poorly correlated in space, their di-
rect measurements could be supplemented by secondary information originating from
other related attributes (Goovaerts, 1997). The estimation generally improves when10

additional and denser information is taken into consideration.
Evapotranspiration depends mainly on temperature, which in turn is strongly con-

trolled by topographic attributes, longitude, latitude and distance from the coast. Tem-
perature varies both in space and time, and it is generally well correlated with elevation.
Elevation can be regarded as completely known from accurate digital elevation mod-15

els and can help to map temperature above the ground. A good example in which
elevation was used as external drift to model temperature is reported in Hudson and
Wackernagel (1994). Moreover, at regional scale, stationarity of temperature data can-
not be assumed, so a non-stationary approach as kriging with external drift must be
used.20

In most quantitative ET0 modelling with GIS, the calculation is very often assumed to
produce an exact result, because most current GIS are intrinsically deterministic and
cannot examine the impact of errors in input and output data. Knowing the quality of the
model results is fundamental especially when they are used in spatial decision-making
and water management. The quality of model predictions essentially depends on three25

main factors: 1) quality of data; 2) quality of the model and 3) the way data and model
interact (Burrough, 2001). Therefore it is very important to know how uncertainties in
both model parameter and data propagate through the model. Model uncertainty is
caused by: 1) the limitations in the mathematical models used to simulate the physical
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system imposed by the simplifying assumptions and/or 2) parameter errors in regres-
sion models. Model uncertainty is generally difficult to quantify and a way of estimating
the errors is to use retrospective validation with independent data. Data uncertainty is
instead caused by measurement errors in the data, incomplete knowledge of spatial
and temporal variations and heterogeneities at a spatial scale smaller than the sam-5

pling scale. To assess the model output error resulting from the uncertainties in the
input attributes, a Monte Carlo analysis (Heuvelink, 1998) can be used, an analysis
which consists in the generation of an adequate random input data set realizations and
considers the joint distribution of all input variables. The model is then run for each
single set of realizations of the input variables and the ensemble of model outputs is10

used to infer the output probability function. A single Monte Carlo simulation consists
in model running at all locations of a fine grid covering the interest region. The simplest
way to store error surfaces of interpolated input data in a GIS is to assume that all data
are normally distributed and, then, that the error is correctly expressed by the standard
deviation. This method entails associating two numbers to each cell: the mean value15

and its standard deviation. However, a criticism to this approach is that spatial corre-
lation is neglected and the spatially uncorrelated error is used for each realization. An
alternative method consists in applying joint multivariate stochastic simulation (Gomez-
Hernandez and Journel, 1992; Goovaerts, 1997), which is aimed at making predictions
of cross-correlated variables. Such prediction is accomplished using a variogram ma-20

trix, which includes not only spatial autocorrelation, but also spatial cross-correlation
between variables. The latter information is expected to improve the spatial predic-
tion of ET0 by reducing its uncertainty, when compared with traditional Monte Carlo
simulations. Stochastic simulation actually allows to estimate cell-specific probability
distribution functions which reflect the location of known data points and the spatial25

correlation structures of the variables. Although the stochastic simulation method is
computer intensive, it has several advantages: unbiased predictions of model outputs;
estimates of output uncertainties; assessment of error propagation in non-linear and
complex models; estimation of probability of exceeding a critical threshold.
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The objective of this paper was to assess spatial uncertainty of a monthly reference
evapotranspiration model resulting from the uncertainties in the input attributes (mainly
temperature data) at regional scale (Calabria region, southern Italy). In this study, it
was focused on June mean reference evapotranspiration, and a subset of elevation as
external drift variable at points on a 250-m square grid was used for simulation.5

2 Materials and methods

The study case was the Calabria region located in the southern part of the Italian
peninsula (Fig. 1) with an area of 15 080 km2 and a coastline of 738 km on the Ionian
and Tyrrhenian seas. In the North, it borders Basilicata region for 80 km. Calabria has
an oblong shape with a length of 248 km, and a width ranging between 31 and 111 km.10

Although Calabria does not have many high summits, it is one of the most mountainous
regions in Italy (Fig. 1): 42% of the land is mountainous, 49% hilly, and only 9% is flat.
The maximum elevation is 2267 m a.s.l., while the average elevation is 597 m a.s.l.

Temperatures have been measured daily at 134 weather stations of the Italian Hy-
drographic Service (at present “Centro Funzionale Multirischi della Calabria” of the15

“Agenzia Regionale per la Protezione dell’Ambiente della Calabria” – Arpacal) dur-
ing the period 1924–2009 (Fig. 1). Since it was focused on the month of June, only
temperature data of this month were taken into account. Temperature time series hav-
ing less than 30 years of observation were discarded and only temperature data from
42 weather stations were used. Some external stations were used to take into account20

the border effect. To map June temperatures, a subset of elevation at points on a 250-
m square grid from accurate digital elevation model was used in simulation as external
drift variable.

The reference evapotranspiration was computed using the Hargreaves equation
(Hargreaves and Samani, 1985), which can be expressed as:25

ET0=0.0023Ra (T +17.8)
√

(Tmax−Tmin). (1)
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where ET0 is the computed reference evapotranspiration (mm d−1); Ra is the water
equivalent of the extraterrestrial radiation (mm d−1) computed according to Allen et
al. (1998); Tmax, Tmin and T are the daily maximum, minimum and mean air temperature
(◦C), with T calculated as the average of Tmax and Tmin. 0.0023 is the original empirical
coefficient proposed by Hargreaves and Samani (1985). The monthly mean reference5

evapotranspiration was obtained multiplying the result by 30 days.

Stochastic simulation of the input attributes

In this paragraph only a very brief introduction to the algorithm used in the case
study will be given; for a detailed presentation, interested readers should refer to
Goovaerts (1997), Chilès and Delfiner (1999), among others. Most geostatistics is10

based on the concept of a random function Z(x), whereby the set of unknown values
is regarded as a set of spatially dependent random variables Z(xα). Each measure-
ment of air temperature, z(xα), at different location xα (x is the location coordinates
vector and α the sampling points=1, ..., n) is interpreted as a particular realization of
a random variable Z(xα).15

Geostatistical simulation, compared with an optimal procedure of estimation such as
kriging, provides a more realistic means of evaluating the spatial variability of a variable
(Castrignanò and Buttafuoco, 2004). Stochastic simulation results in a large number
of equiprobable images, also called realizations, which honour the sample data and
reproduce statistical characteristics and spatial features. Two types of simulations are20

available using geostatistics: unconditional and conditional. Unconditional simulations
simply reproduce certain statistical measures (mean, variance, covariance function)
of a variable without considering the observed data. Conditional simulations generate
realizations that incorporate the correlation structure of the data, honour the data and
reproduce some random component of variation, which is smoothed out by kriging.25

There are several simulation techniques: the one used in this work is the turning
bands method with external drift, which represents a reasonable trade-off between
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quality and computing time. This method was chosen because the weather stations
having temperature data with more than 30 years of observations were sparse and few
(only 42). Elevation is additional and denser information easily available, which can
improve the estimation. In the scope of simulation with external drift, the variable of
interest Z(x) comprises deterministic and stochastic components, then it can represent5

the combination by the model:

Z(xα)=m(x)+ε(x) and E [Z(x)]=m(x). (2)

where ε(x) is the stochastic component with zero mean and variogram γε(h) and m(x)
is the drift which is usually modelled as a linear function of a smoothly varying sec-
ondary (external) variable y(x):10

m(x)=a0(x)+a1(x) y(x). (3)

The principle is to simulate a target variable using an auxiliary linear correlated vari-
able known at the grid nodes of the result grid file. The auxiliary correlated variable in
this case study was elevation because there is a good linear correlation between both
June mean minimum (−0.90) and June mean maximum (−0.87) temperature data. The15

value of the secondary variable (elevation) must be known at all primary data locations
xα (α= 1,...,n) and at all locations x0 being estimated. Moreover, the secondary vari-
able should vary smoothly in space to avoid instability of the kriging with external drift
system (Goovaerts, 1997). The simulation algorithm generates a 2-D simulation from
the 1-D simulations along the lines. The turning bands method is a powerful and useful20

mathematical operator (Christakos, 1987, 1992), however some authors (Deutsch and
Journel, 1998) have criticised it because of the generation of artefacts in the simulated
images. These artefacts are for the 3-D cases due to the limitation of a maximum of
15 lines which provide a regular partition of the 3-D space but there is no such limitation
in 2-D. The turning band method consists in adding up a large number of independent25

1-D simulations on the lines partitioning the plane. The value of the simulation at a
point of the plane is the sum of the simulated values of the projected points on the dif-
ferent lines. In practice, the 2-D covariance is given and the 1-D covariance is obtained
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by a deconvolution process. The simulations along each line are discretized so that
the same simulated value at a point is assigned to the “band” perpendicular to the line
and containing the point. Hence, the name turning “bands” given to the method. The
only parameter of this method is the count of bands that has been fixed to 400 in this
work. This was a good compromise to save computer time and obtain good results.5

Moreover, the number of realizations was fixed to 500 because high accuracies are
reached only when the number of runs is sufficiently large.

The previous steps generate non-conditional realizations, which reproduce the given
covariance function but do not honour the data. Conditioning is implemented in the

software ISATIS® release 10.03 (www.geovariances.com) by kriging (Journel and Hui-10

jbregts, 1978; Chiles and Delfiner, 1999). The conditional simulation at location x0 is
given by:

Zcs (x0)=Zs (x0)+
n∑

L=1

λ0
i [Z (xi )−Zs (xi )]. (4)

where Zcs(x0) is the conditional simulation at x0; Zs(x0) the non-conditional simula-
tion at x0; z(xi ) the experimental value at experimental location xi ; Zs(xc) the non-15

conditional simulation at experimental locations xi ; λ
0
i the kriging weight assigned at

experimental location xi when estimating at location x0; and n the number of exper-
imental locations for kriging. As the turning bands method is a Gaussian simulation
technique, it requires a multi-Gaussian framework. Therefore, each variable has ini-
tially been transformed into a normal distribution with zero mean and unit variance, and20

the simulation results have subsequently been back-transformed to the raw distribu-
tion. Such procedure is known as Gaussian anamorphosis (Chilès and Delfiner, 1999;
Wackernagel, 2003), and it is a mathematical function which transforms a variable
with a Gaussian distribution into a new variable with any distribution. The Gaussian
anamorphosis can be achieved using an expansion into Hermite polynomials Hi (Y )25

(Wackernagel, 2003) restricted to a finite number of terms.
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The joint turning bands simulation requires modelling and fitting a linear model of
coregionalization (Goovaerts, 1997). The Linear Model of Coregionalization (LMC) is a
quantitative measure of spatial correlation of the regionalized variable z(xi ). It provides
a method for modelling the direct and cross-variogram(s) of two or more variables so
that the variance of any possible linear combination of these variables is positive. Any5

experimental variogram is modelled as a combination of the same basic structures.
The aim was to build a model which described the major spatial features of the

attributes under study. The models used can represent bounded or unbounded varia-
tion. In the former models, the variance (known as the sill variance) has a maximum
at a finite lag distance (range) over which pairs of values are spatially correlated. In10

this case, to model the coregionalization of the two attributes (Tmax and Tmin), three
(N(N+1)/2) direct and cross variograms must be calculated and modelled jointly for
the anamorphosed temperature data.

The best fitting function can be chosen by cross-validation, which checks the com-
patibility between the data and the model. It takes each data point in turn, removing15

it temporarily from the data set and using its neighbouring information to predict the
value of the variable at its location. The estimate is compared with the measured value
by calculating the experimental error, i.e. the difference between estimate and mea-
surement, which can also be standardized by estimating the standard deviation. The
goodness of fit was evaluated by the mean error (ME) and mean squared deviation20

(MSDR). The mean error, which proves the unbiasedness of estimate if its value is
close to 0, is given by:

ME=
1
N

N∑
i=1

[z∗(xi )−z(xi )]. (5)

where N is the number of observation points, z∗(xi ) is the predicted value at location
i , and z(xi ) is the observed value at location i . The mean squared deviation ratio25

MSDR, which is the ratio between the squared errors and the kriging variance (σ2(xi ))

4576

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/4567/2010/hessd-7-4567-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/4567/2010/hessd-7-4567-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 4567–4589, 2010

Uncertainty
assessment in

modelling
evapotranspiration

G. Buttafuoco et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

is expressed as:

MSDR=
1
N

N∑
i=1

[z∗(xi )−z(xi )]
2

σ2(xi )
. (6)

If the model for the variogram is accurate, the mean squared error should equal the
kriging variance and the MSDR value should be 1.

Then each geostatistical multivariate simulation has been used as input to the ET05

model. Probabilistic information has been extracted from the set of simulated images.
By averaging the simulated values at each cell, two different maps have been pro-
duced: the map of the expected value at any given location (E-type or Expected-value
estimate; Journel, 1983) and the one of its standard deviation. The uncertainty in
model predictions has been quantitatively evaluated from the replicate stochastic im-10

ages.
In sum, the proposed approach consisted in the following steps:

1. generating a set of input attributes (Tmin and Tmax) realizations ai (i = 1, . . . , 500)
at nodes of a 250-m square grid using the joint stochastic simulation with elevation
as external drift;15

2. for this set of inputs realizations ai , computing the reference evapotranspiration
using Eq. (1);

3. for each input and output attributes, computing average and standard deviation of
the simulated values at each cell to produce the maps of the expected values at
any given location and the ones of their standard deviation.20
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3 Results and discussion

The summary statistics of mean maximum (Tmax) and mean minimum temperature
(Tmin) data (Celsius degrees) for June and elevation data (m a.s.l.). are reported in Ta-
ble 1. The assumption of normal distribution was not accepted for both mean maximum
(Tmax) and mean minimum temperature (Tmin) data at a probability level p> 0.10, and5

the data distributions showed long negative tails. Therefore, before conducting joint
Gaussian simulation, we applied a Gaussian transformation to Tmax and Tmin data. No
anisotropy was evident in the maps of the 2-D variograms (not shown) to a maximum
lag distance of 100 km. A nested isotropic LMC (Table 2) was fitted to all the experi-
mental direct and cross-variograms of the Gaussian transformed variables. The LMC10

(Table 2) includes three different structures: a nugget effect, an exponential structure
with a practical range of 30 000 m, and a spherical structure with a range of 60 000 m.
The goodness of fit was evaluated by a cross-validation test and the results in terms
of mean error (ME) and mean squared deviation (MSDR). ME ranged between −0.02
and −0.07, while MSDR between 0.92 and 0.93. The optimal values for the two statis-15

tics are 0 for ME and 1 for MSDR, then the multivariate model of spatial correlation
was unbiased and reproduced the experimental variance adequately. The sum of the
eigenvalues at each spatial scale provides an estimate of the variance at that scale
(Table 2). The nugget was about 50% of total variance (2.18), while the contribution
of the shorter range component (30 000 m) of variation to the total variance was about20

40% and the contribution of the longer range component (60 000 m) was 10%. The
nugget effect component represents the unstructured spatial variation. It is mainly due
to measurement errors and to the spatial variation at a scale lesser than the minimum
distance of sampling. Moreover, in this study, the nugget ratio is due to the sparse and
limited number of sampling locations. The variation at shorter scale (40%) is probably25

related to the local orographic characteristics of the region, while the longer scale of
variation (10%) could be related to large scale factors.
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The above LMC was used to generate the 500 simulations of Tmin and Tmax at nodes
of a 250-m square grid. Afterwards, the expected values of Tmin and Tmax and their
standard deviation were computed and mapped: Fig. 2 and Fig. 3 present a way to
treat the jointly simulated images of the two variables, by calculating the mean and the
standard deviation respectively of the 500 simulations at each grid node, and then map-5

ping the results for each variable. The mean maps (Figs. 2 and 3) show the complexity
in spatial distribution of temperatures. The maps of the standard deviation (Figs. 2 and
3), obtained by post-processing the simulations, have allowed to assess the uncertain-
ties of non-Gaussian variables and to overcome the drawback of kriging variance of its
independence from actual sample values. From a visual inspection, it shows clearly10

how the uncertainty distributions of temperature are mostly related to the density of the
sample data (Fig. 1). Figures 2 and 3 also show, as expected, that lower values of
mean temperatures are estimated in correspondence to the mountainous areas (Sila
Massif, Serre Chain and Aspromonte Massif) (Fig. 1), which have also the higher uncer-
tainties (higher values of standard deviation). Figure 2 also shows a large area of the15

region (the northern part) characterized by high values of standard deviation. These
high values occurred in an area with high variability in elevation and consequently in
temperature data at short distance.

The 500 realizations of temperature data were used as input for ET0 model and then
the maps of the mean and standard deviation of ET0 (Fig. 4) were obtained in a similar20

way to the maps of Fig. 2 and Fig. 3. A visual inspection shows clearly where the
uncertainty in ET0 is high. The simulation has shown how the previous uncertainties
in input variables can affect the predictions of ET0 model. In particular, one can note
that there are extended areas characterised by high uncertainties localised on the Sila
Massif, the Aspromonte Massif, the Serre Chain and the north-western portion of the25

region. The areas characterised by medium-high values of ET0 present not very high
values of standard deviation, and therefore less uncertainty.

This approach has demonstrated that it is possible to produce maps of uncertainty,
which are more useful than the simple extrapolations of estimation points. Of course, it
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is important to evaluate how well the model approximates reality, i.e. model uncertainty.
If the model has high uncertainty, a difference in model output may not indicate a real
change and could thus be meaningless.

4 Conclusions

The results of a spatial uncertainty analysis have shown that the prediction quality de-5

pends on the uncertainties of the data used in the analysis; therefore map makers
should convey the accuracy of the maps they produce (Heuvelink, 1998). A complete
characterisation of the accuracy of spatial data should also include the spatial correla-
tion of the attributes used for estimation and stored in a GIS. In the past, a single root
mean squared error was sufficient to assess spatial accuracy, but now it is no longer10

sufficient, and much more information should be provided to characterise the quality of
a map.

The objective of this study, however, was not to validate the model or assess the
errors associated with the model type and coefficients, but rather to evaluate how the
variability of inputs affects uncertainty of model prediction. By definition, a model is an15

approximation of reality and some models describe reality better than others. There-
fore, the choice of model plays an important role in error prediction. In this paper,
however, it was assumed that an appropriate model was selected and that the model
errors were associated only with the spatial variation of the input attributes.

In order to obtain realistic values of the model output uncertainty, when the model20

outputs are supposed to be spatially correlated, it is critically important to model and
assess spatial correlations of input variables (Heuvelink and Pebesma 1999). Ignoring
spatial correlation between input variables, as in the traditional Monte Carlo approach,
implies modelling input variables as white noise. In this case, all uncertainty in ET0
predictions might vanish after mapping with a dense point grid. The required density25

depends on the estimate precision level, and it is paramount to model spatial correla-
tion correctly to separate input error from model uncertainty. The two types of variation
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are quite different. Spatial variation refers to the deterministic variation of ET0 or a
single realization of the input attributes, whereas uncertainty refers to ET0 distribution
for a single point obtained from the ensemble of Monte Carlo simulations. The ap-
proach would put more emphasis on the quality of the input data and on how the input
uncertainties may have a considerable impact on prediction uncertainty. Looking at5

the standard deviation map of ET0 (Fig. 4), only a weak spatial pattern can be distin-
guished; the errors do not appear correlated with the estimates of ET0, but with the
density of weather stations.

Finally, it is worth pointing out the consequences of estimation uncertainty in the
context of decision-making and water resources management. There is currently some10

reluctance to perform error recognition, possibly because of the greater analysis re-
quired. However, studying uncertainty leads to increased understanding of the roles
played by the different input attributes, which also allows to evaluate the relative costs
and benefits of using different scenarios.
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Table 1. Basic statistics of mean maximum (Tmax) and mean minimum temperature (Tmin) data
(Celsius degrees) for June and elevation data (m a.s.l.).

Statistics Tmax Tmin Elevation

Mean 26.9 15.8 366.4
Stand. Dev. 2.5 3.0 386.5
Maximum 30.9 19.6 1315.0
Upper quartile 28.7 18.0 516.0
Median 27.9 17.1 242.0
Lower quartile 26.0 15.2 15.0
Minimum 20.1 7.7 2.0
Skewness −1.0 −1.4 1.1
Kurtosis 3.3 4.2 3.4
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Table 2. Fitted linear model of coregionalization of anamorphosed Tmax (G Tmax) and Tmin (G
Tmin). The coregionalization matrices, the eigenvalues, and the corresponding percentage of
variance explained by each eigenvector for the three basic structures are reported.

Variable G Tmax G Tmin

(1) Nugget effect
G Tmax 0.5613
G Tmin 0.2752 0.5784
Eigenvalue: 0.8452 0.2945

(74.16%) (25.84%)

(2) Exponential model (Pr. Range = 30 000 m)
G Tmax 0.3108
G Tmin 0.3589 0.5168
Eigenvalue: 0.7872 0.0403

(95.13%) (4.87%)

(3) Spherical model (Range = 60 000 m)
G Tmax 0.2204
G Tmin 0.0037 0.0001
Eigenvalue: 0.2205 0.0000

(100.00%) (0%)
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Fig. 1. Digital elevation model (right) of the study area and location (left) of the weather station
(pushpins).
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Fig. 2. Mean and standard deviation maps of simulations for the mean minimum temperature
(Tmin).
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Fig. 3. Mean and standard deviation maps of simulations for the mean maximum temperature
(Tmax).
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Fig. 4. Mean and standard deviation maps of simulations for ET0.
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